class: center, middle, inverse, title-slide .title[ # 9. Remote Sensing of Biodiversity ] .author[ ### Jasper Slingsby, BIO3018F ] .date[ ### 2025-02-07 ] --- class: center, middle ### We want to measure biodiversity everywhere, all the time... <img src="images/world_seasonality.gif" width="80%" style="display: block; margin: auto;" /> .center[Remote sensing is pretty much the only way this can be achieved...] --- layout: false .pull-left[ ## It's a rapidly growing field <img src="images/turner2003.png" width="90%" style="display: block; margin: auto auto auto 0;" /> <img src="images/satellitelaunches.jpg" width="90%" style="display: block; margin: auto auto auto 0;" /> .footnote[Turner et al. 2003] ] .pull-right[ <img src="images/cavenderbares2020.png" width="75%" style="display: block; margin: auto auto auto 0;" /> .footnote[Cavender-Bares et al. 2020] ] --- layout: false ## BioSCape: Biodiversity Survey of the Cape <img src="images/bioscape_new.png" width="90%" style="display: block; margin: auto;" /> .left[.footnote[...and the Cape is currently the epicentre of this endeavour - https://www.bioscape.io/]] --- layout: false ## BioSCape: Biodiversity Survey of the Cape .pull-left[ - `\(>\)` 150 scientists and conservation practitioners - 19 teams (mixed US, RSA, other) - terrestrial and aquatic - 3 planes - 6 instruments (2 x V-SWIR imaging spectrometers, hyperspectral thermal, multispectral (RGB + NIR) and 2 x LiDAR) - fundamental and applied science - mostly NASA funded <img src="images/bioscape_planes.png" width="100%" style="display: block; margin: auto;" /> ] .pull-right[ <img src="images/bioscape_kumu.png" width="100%" style="display: block; margin: auto;" /> .footnote[www.bioscape.io] ] --- class: center, middle <img src="images/Bioscape infographic_e3.jpg" width="100%" style="display: block; margin: auto;" /> --- class: center, middle ## But how do we actually measure biodiversity with remote sensing? --- layout: false .pull-left[ ## There are many facets of biodiversity to measure! <br> An advantage of remote sensing is that it can directly measure the structure, composition and function of biodiversity... ...at least from the scale of individuals up... ] .pull-right[ <img src="images/Noss_Biodiversity.png" width="100%" style="display: block; margin: auto;" /> .footnote[Noss 1990, _Conservation Biology_] ] --- layout: false .pull-left[ ## There are many facets of biodiversity to measure! An advantage of remote sensing is that it can directly measure the structure, composition and function of biodiversity... <img src="images/skidmore2021_fig1.png" width="120%" style="display: block; margin: auto;" /> .footnote[Skidmore et al. 2021] ] .pull-right[ <img src="images/ebv_circle.png" width="90%" style="display: block; margin: auto;" /> ...at least from the scale of individuals up... .footnote[https://geobon.org/] ] --- background-image: url("images/nasa_ems.jpeg") background-size: contain text-color: white .left-column[ ## .my-style-white[The Electromagnetic Spectrum] ] --- ## Many sensor types! .left-column[ Active vs passive sensors Multispectral vs hyperspectral (imaging spectrometers) Much variation within each type - Especially spectral range and resolution! .footnote[[Pettorelli et al. 2018](http://dx.doi.org/10.13140/RG.2.2.25962.41926)] ] .right-column[ <img src="images/pettorelli2018_sensors.png" width="85%" style="display: block; margin: auto;" /> ] --- layout: false ## Multispectral vs hyperspectral (imaging spectrometers) <img src="images/multi vs hyper.png" width="70%" style="display: block; margin: auto;" /> --- ### Remote sensing is particularly useful in combo with other observations <img src="images/turner2014.jpeg" width="75%" style="display: block; margin: auto;" /> .footnote[[Turner 2014](https://doi-org.ezproxy.uct.ac.za/10.1126/science.1256014)] --- class: center ##Productivity and Seasonality <img src="images/world_seasonality.gif" width="80%" style="display: block; margin: auto;" /> --- class: center ##Land cover (and change) <img src="images/skowno2021.jpg" width="50%" style="display: block; margin: auto;" /> .left[.footnote[Skowno et al. 2021]] --- class: center ##Land cover change detection <img src="images/renosterveld_planet.gif" width="70%" style="display: block; margin: auto;" /> .left[.footnote[Moncrieff 2022]] --- class: center ##Land cover change time series <img src="images/moilwe.png" width="60%" style="display: block; margin: auto;" /> .left[.footnote[Moilwe et al. in prep]] --- class: center, middle ## But what about metrics like species, functional and phylogenetic diversity? --- layout: false .pull-left[ ## Functional diversity? <img src="images/peninsula_lidar.png" width="100%" style="display: block; margin: auto;" /> Proteaceae shrubs (dark green) surrounded by low shrubs, forbs and graminoids at Silvermine, TMNP. .footnote[Data from City of Cape Town] ] .pull-right[ <img src="images/purkis_klemas2011_lidar.png" width="100%" style="display: block; margin: auto;" /> Light detection and ranging (LiDAR) allows you to measure topography and the vertical structure of vegetation. .footnote[Purkis and Klemas 2011] ] --- layout: false .pull-left[ ## Functional diversity? Imaging spectroscopy ("hyperspectral" remote sensing) allows direct measurement of leaf traits. <img src="images/cawse2021_spectra.png" width="92%" style="display: block; margin: auto auto auto 0;" /> ] .pull-right[ <img src="images/peninsula_hyperspec.png" width="100%" style="display: block; margin: auto;" /> ] --- layout: false <img src="images/traitmapping.png" width="100%" /> --- layout: false ## Phylogenetic diversity? <img src="images/meireles2020.jpg" width="70%" style="display: block; margin: auto;" /> .left[.footnote[Meireles et al. 2020]] Leaf spectra are phylogenetically conserved for some regions, so it's possible that we'll be able to discern lineages using imaging spectroscopy... --- layout: false .pull-left[ ## Identifying species? We can monitor populations of large species..., but identifying all species present...? <img src="images/machine_learning.png" width="70%" style="display: block; margin: auto;" /> .footnote[https://xkcd.com/1838/] ] .pull-right[ <img src="images/cedars_pic.png" width="75%" style="display: block; margin: auto;" /><img src="images/cedars_mapped.png" width="75%" style="display: block; margin: auto;" /> .footnote[Hadebe 2021 MSc thesis] ] --- class: center ## There are challenges and limitations... <img src="images/schimel2020_scale.png" width="50%" style="display: block; margin: auto;" /> .left[.footnote[Schimel et al. 2020]] --- class: center ## But this is what fancy modelling and proxies are for... <img src="images/jetz2016.png" width="43%" style="display: block; margin: auto;" /> .left[.footnote[Jetz et al. 2016]] --- class: center ## Spectral unmixing can detect "spectral signatures" .left-column[ <img src="images/jonaskop_class.png" width="100%" style="display: block; margin: auto;" /> .smaller[Jonaskop, Riviersonderend Mountains] ] .right-column[ Map species/types based on their reflectance of the electromagnetic spectrum! <img src="images/jonaskop_spectral_library.png" width="50%" style="display: block; margin: auto;" /> Given a library of spectral signatures of different species and land cover types (endmembers), spectral unmixing infers the composition of each pixel from the possible mixes of endmembers. This gives a cover map of the majority endmember for each pixel (as here) and the fraction of each endmember for all pixels (next slide). ] --- class: center ## Spectral unmixing can detect "spectral signatures" <img src="images/jonaskop_unmix.png" width="100%" style="display: block; margin: auto;" /> .left[.footnote[Fractional cover of species (e.g. pines), functional groups or land cover types! ]] --- layout: false .pull-left[ ## Combining remote sensing and in situ data Using remotely sensed environmental data to inform species distribution models (SDMs) <img src="images/wilson2016.png" width="100%" style="display: block; margin: auto;" /> E.g. Observed cloud frequency from the MODIS satellite is a better predictor of the distribution of _Protea cynaroides_ than interpolated precipitation. .footnote[Wilson and Jetz 2016] ] .pull-right[ <img src="images/kingprotea.jpg" width="100%" style="display: block; margin: auto;" /> ] --- layout: false .pull-left[ ## The Spectral Diversity Hypothesis Is spectral diversity a good proxy for biotic diversity? <img src="images/frye2021map.png" width="100%" style="display: block; margin: auto auto auto 0;" /> ] .pull-right[ <img src="images/frye2021fig.png" width="90%" style="display: block; margin: auto;" /> A test looking at spectral diversity from leaf spectra for 1210 species across 1267 plots supports the hypothesis **at the leaf level...** .footnote[Frye et al. 2021] ] --- layout: false .pull-left[ ## The Spectral Diversity Hypothesis <img src="images/vanleeuwen2020_scale.png" width="85%" style="display: block; margin: auto auto auto 0;" /> ] .pull-right[ <img src="images/vanleeuwen2020b.png" width="70%" style="display: block; margin: auto;" /> But canopy reflectance is more complex... Leaf angle, shadow, density, etc affect the spectral reflectance of vegetation, reducing our ability to identify and map species - especially as the resolution of the imagery coarsens. .footnote[van Leeuwen et al. 2021] ] --- layout: false .pull-left[ ### Environmental heterogeneity Another approach is just to map and monitor environmental heterogeneity ####_"Conserving nature's stage"_ The Nature Conservancy and others using this approach to identify parcels of Earth that are valuable for their capacity to support diverse life forms today and into the future Typically identified based on their abiotic heterogeneity or geodiversity, much of which can be mapped and/or monitored with remote sensing - topography, climate, soils, etc ] .pull-right[ <img src="images/humboldt.jpg" width="90%" style="display: block; margin: auto;" /> .footnote[Alexander von Humboldt] ] --- class: middle ## Take-home >*Remote sensing is a rapidly growing field that is seen as the holy grail for mapping and monitoring biodiversity (and Essential Biodiversity Variables) at high spatial resolution from local to global scales.* >*There are many remote sensing methods and tools, and these are constantly improving.* >*While there are many limitations (e.g. spatial resolution), many can be addressed with modelling approaches, and are being overcome as the technology and methods improve.* >*Remote sensing approaches must be paired with _in situ_ observations to "ground-truth" and calibrate/validate that they do reflect reality on the ground.* >*Remote sensing can be valuable for mapping habitat variables such as climate, topography, etc that can inform inference about species distributions or other proxies for biodiversity like environmental heterogeneity or spectral diversity.* --- ## References Gotelli, N. J. and R. K. Colwell (2001). "Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness". In: _Ecology letters_ 4.4, pp. 379-391. ISSN: 1461-023X, 1461-0248. DOI: [10.1046/j.1461-0248.2001.00230.x](https://doi.org/10.1046%2Fj.1461-0248.2001.00230.x). Slingsby, J. A., C. Merow, M. Aiello-Lammens, et al. (2017). "Intensifying postfire weather and biological invasion drive species loss in a Mediterranean-type biodiversity hotspot". En. In: _Proceedings of the National Academy of Sciences of the United States of America_ 114.18, pp. 4697-4702. ISSN: 0027-8424, 1091-6490. DOI: [10.1073/pnas.1619014114](https://doi.org/10.1073%2Fpnas.1619014114). Whittaker, R. H. (1972). "Evolution and measurement of species diversity". En. In: _Taxon_ 21.2-3, pp. 213-251. ISSN: 0040-0262, 1996-8175. DOI: [10.2307/1218190](https://doi.org/10.2307%2F1218190). --- class: center, middle # Thanks! Slides created via the R packages: [**xaringan**](https://github.com/yihui/xaringan)<br> [gadenbuie/xaringanthemer](https://github.com/gadenbuie/xaringanthemer) The chakra comes from [remark.js](https://remarkjs.com), [**knitr**](http://yihui.name/knitr), and [R Markdown](https://rmarkdown.rstudio.com).